01 (908)281-9098[email protected]
PARISS Modular Imaging spectrometer - spectrograph with zoom magnification

PARISS® Imaging Spectrograph And Spectrometer

The PARISS, modular, prism-based, imaging spectrograph/ spectrometer. Effective with low signal-to-noise, spatially resolved, spectra.  Use with a macro-lens, microscope, or a telescope

Tripod mounted PARISS imaging spectrometer - spectrograph

Tripod mounted PARISS imaging spectrometer for use  in outdoor applications

Mobile cart-mounted imaging spectrometer - spectrograph

PARISS mobile imaging spectrometer for use in a clinic, laboratory or factory floor

The PARISS Prism Modular Imaging Spectrometer and Spectrograph

Overview: A modular prism based imaging spectrometer and spectrograph captures low signal- to-noise, spatially resolved spectra, at all wavelengths from 365-nm – 920-nm simultaneously.

When used with a CCD or CMOS camera spectrum detector it becomes an imaging spectrometer. Enables point-to point spectral imaging (see Figure 1).

Design: The PARISS imaging spectrograph and spectrometer uses a prism with curved sides to deliver state of the art light throughput efficiency.  This enables highest sensitivity and very fast acquisition times, even with low signal to noise spectra. (See figure 2)

Zoom magnification is available from 1x to 40x, and more.

Applications include:

  • Biological and medical research
  • Solar energy research
  • Detection of toxic algae (cyanobacteria that can produce deadly cyanotoxins) (Figure 3)
  • Detection of microplastics in sediment (Figure 4)
  • Light-emitting devices
  • Photo-luminescent materials
  • Forensic materials
  • Industrial Q.C.

Macro-PARISS “kit:”  Most PARISS modules are available separately.  Our goal is to enable any researcher to mix-and-match and buy only what is needed.  When budgets are squeezed this is a great way to save money.

Upgrade any time as funds become available.

Mounting: PARISS imaging spectrograph can be column mounted on a bench, a tripod, or interface with a microscope video port.

Light collection optics can include a c-mount macro lens, with or without zoom capabilities, a microscope objective or telescope optics.

Spectral object characterization in %Reflection, absorption, or luminescence

Spectral cameras: can be user supplied or select from a range of options available through LightForm.

Software: Written in Python, various options are available including:

  • Basic spectral analysis %Refection, absorption, emission
  • Spectral classification
  • Create spectral libraries
  • Perform spectral recognition (Figure 5)

Go here to compare the spectral properties of prisms vs gratings

PARISS Imaging Spectrometer / Spectrograph Specifications

  • Weight: 1,250 g (Excluding a camera)
  • Moving parts: None. Optimizes stability and reproducibility. 
  • Dimensions: 210 x 55 x 85 mm
  • Wavelength dispersive element:  The wavelength dispersive element is a prism with optical “power.” Concave and convex surfaces on the front and rear surfaces correct astigmatism, coma, and spherical aberration. (See Figure 2)
  • Spectral range: 365 to ~920 nm or 400 to ~920 nm, depending on choice of camera.  All spectra acquired simultaneously without order sorting filters
  • Light throughput efficiency: Internal transmission ~90% from 450 to ~920 nm.
  • Entrance slit dimensions: Standard 5 mm. by 25 micron, widths of 50 and 100 micron are available in pre-aligned mounting assemblies.
  • Spatial resolution at the sample: Depends on slit width and camera pixel size ~ 0.6 micron by ~0.6 micron with 40x magnification typical.  Nanoparticles may be detected but not resolved
  • Spectral resolution: ~1 nm measured at the full width at half maximum of the 436 nm Hg line, depends on slit width and camera pixel size.
  • Optional calibration standards: Available MIDL wavelength calibration lamp and a “SYLPH”  NIST certified radiometric light source.

Click here for a performance comparison between
a prism and a diffraction grating

An imaging spectrograph images a point on the entrance slit as a point on the detector

Figure 1: An imaging spectrograph images a point on the entrance slit as a point on the spectrum detector as a function of wavelength

Figure 2: The PARISS prism spectrograph with curved sides to enable spatial imaging

 Pond with algal bloom. Spectrum insert captured with the PARISS imaging spectrometer confirms the presence of toxic cyanobacteria.

Figure 3: Pond with algal bloom.  Spectrum insert captured with the PARISS imaging spectrometer confirms the presence of toxic cyanobacteria.

Spectral image of microplastics

Figure 4: Spectral image of microplastics taken in darkfield reflection

Imaging spectroscopy software offers various formats including 3D

Figure 5:  Python, imaging spectroscopy software showing 3D presentation of spectral characteristics

How PARISS Analytical Hyperspectral Imaging Works

How PARISS Hyperspectral Wavelength Dispersive Imaging Works

Darkfield hyperspectral nanoparticle characterization 

How PARISS hyperspectral imaging microscopy works

PARISS hyperspectral imaging microscopy modes of operation

All PARISS Hyperspectral systems are custom configured to meet the needs of an application.
The above configuration is for
guidance only. Specifications can and do change without notice.